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Kubo-Einstein Relation for Quantum Brownian 
Motion in a Periodic Potential 
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Using a previously derived general formalism for a dissipative quantum particle 
in a boson bath, we prove that when the damping is Ohmic, the Kubo-Einstein 
relation between the diffusion constant and the linear mobility D = kTM holds 
to all orders in Vo for a periodic potential V(x)= V o cos(k0x ). 
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1. I N T R O D U C T I O N  

Because of its direct relation to a realistic physical sys tem-- the  well-known 
Josephson junctions between two superconductors-- the dynamics of a 
dissipative quantum particle in a periodic cosine potential has attracted 
a great deal of recent theoretical interest. (1-4) In a previous work, (5) we 
developed for this system a very general real-time description in terms of 
the so-called Wigner distribution. Various physically interesting quantities 
can be calculated in this formalism. Included among these is the mobility 
of the particle under an external force that corresponds directly to the I - V  

characteristic of a current-biased Josepson junction. (4) 
In this paper, we shall focus our attention on the Einstein relation 

which links the linear mobility M and the diffusion constant D via 
D = k T M .  Although Kubo  (6/ has given a rather formal derivation of the 
linear-response theory to which the Einstein relation belongs, there are 
some problems here with the definition of M arising from the fact that the 
stationary state in which the particle moves with a constant velocity is not 
normalizable. To get over these problems in the classical system one has to 
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define the measure on the environment as seen by the particle (the so-called 
Palm measure(V)), which is stationary whenever the medium in which the 
particle moves is translationally invariant, e.g., a homogeneous random 
environment (this includes the periodic case). Alternatively, one can use, 
for the periodic potential, a finite box with the same periodicity and com- 
pute the stationary distribution of the particle in that box. This will then 
give the same answer for the velocity distributions as the infinite system. 
Unfortunately, neither of these prescriptions works for quantum systems, 
because we cannot define appropriately the Palm measure and the 
equivalence for a periodic potential between an infinite system and a finite 
periodic box does not hold due to the requirement of periodicity of the 
wave functions in the latter case. We are therefore forced to consider an 
initial state in which the particle is localized near the origin and then define 
the mean velocity v(F) in the presence of an external force F as 

v(F) = lim <~/m>(t, F ) =  lim <~>(t, F)/t 

assuming that the limit in fact exists. The linear mobility M is given by 
M= [v(F)/F]IF~O. One can likewise define the diffusion constant as 
D= [ <x2>/2t] ] , ~ .  

The advantage and disadvantage of this definition of M is that we 
neither require nor obtain any information about the stationary distribu- 
tion in the presence of the force F--except for the assumption of the 
existence of the two limits. There is, however, also a question now about 
the applicability of the general derivation of linear-response theory, so it is 
important to investigate the Einstein relation explicitly for the quantum 
case. Here it is not obvious a priori whether D ~ 0 or M ~ ~ (or both) as 
T ~  0. In refs. 1, 3, and 4 the relation has been proved to the lowest order 
in V0 (cf. below) as well as to all orders of V0 under some approxima- 
tions. (3) 

The strategy used in refs. 1 and 4 is now generalized to arbitrary 
orders in Vo. In what follows, we shall first review briefly in Section 2 the 
derivation of the general expressions for M and D. Then the proof of the 
Kubo-Einstein relation is presented in Section 3. Finally, some discussions 
are given in Section 4. 

2. THE LINEAR M O B I L I T Y  A N D  D IFFUSION C O N S T A N T  

We consider a system consisting of a particle of mass m moving in a 
potential V(x)= Vo cos(kox) and a "heat bath" representing its environ- 
ment. The total Hamiltonian is 

~q=/4~ + ~qc + / L  (1) 
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with 

I2Ip = ~m + V(x) (2a) 

H e = Y" hcok~l~kCIk (2b) 
k 

the Hamiltonian of the particle and environment, respectively, and 

C 2  X 2 (2c) /L=~ E c~(a~+ a,)+E 
k k 

the coupling interaction [the second term in (2c) cancels the adiabatic 
potential shift induced by the first term]. {h~, ak} is the set of creation and 
annihilation operators of the boson bath and the carets indicate that 
the objects are operators. It is convenient to introduce the dissipation 
spectrum (1-5) defined as 

J(co) = ~ y~ c ~ [ 6 ( c o -  co~) - 6(0) + co~)] 
k 

(3) 

which will be taken, in the thermodynamic limit, to be a smooth function 
of co. In particular, for the Ohmic damping J(co) = t/co. 

Given a density matrix d(0) at time 0, we call ,6(0 =Yr~[d(t)]  the 
reduced density matrix for the particle (where the subscript "e" indicates 
the "environment") and write its position representation in terms of the 
symmetric, Q = (x + x')/2, and antisymmetric, r = ( x - x ' ) ,  coordinates, 

p(Q, r, t)= (Q + r/2] f lU) IQ-  r/2 ) (4) 

The Wigner distribution (see, e.g., ref. 8) is then given by 

w(Q, p, t)= f dr ( i ) p(Q,r, t)  exp - ~ P r  (5) 

For simplicity we shall consider the following kind of product initial 
states 

el(O) = ,6(0) exp( -filYI~)/Tre[exp(- fl/4~) ] (6) 

where ,6(0) operates on the particle's variables only. Physically the product 
state assumes a sudden switch-on of the coupling at t = 0 +. It was then 
derived explicitly in ref. 5 that the Wigner distribution at time t is given by 
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w(Qf, Pf , t) = 16(Qf- Qo(t) ) 6(Pf- Po(t)) 

+ ~ dt. dt. 1"'" dt, ~ 5(Qf-Q.(t)) 
. = 1 { ~ j =  _+1} 

(I o- sinEkoeo(, )n) (7) 
j = l  

where the average is with respect to both the initial Wigner distribution of 
the particle w(Qi, Pi, 0) and a Gaussian random process introduced in 
the derivation. The quantities P.(t) and Q.(t) are defined through the 
following modified "classical Langevin process": 

mOn-~- fs dr' o~l(t-t')On(t')=O{l(t)Qi~ -k~ ~ ~j(t-lj)-[-~(t) (Sa) 
T j = l  

P A t )  = mO.( t ) ,  Q.(O) = Q,, Po(O) = Pi (8b) 

where ~(t) is Gaussian noise with covariance 

(~(t) ~(t') ) = a 2 ( t -  t') (9) 

The functions a~(t) and c%(t) are in turn determined by 

al(t) = 2 - -  cos(cot) (10a) J --~o co 

e2 = o~ ~ J(co) h coth cos(cot) (10b) 

The solution of (8a) and (8b) can be further decomposed into two parts, 

Q.(tl=Qo(t)+? .~ ajg(t-tj) (11) 
j = l  

where Qo(t) is the solution in the absence of the &forces and g(t) is the 
Green's function of the homogeneous part 

f2 m~(t)+ dt' ~l(t-t'),2(t')=6(t) (12a) 

with the initial condition 

g(t)=~,(t)=-O for t<O (12b) 
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We now derive the general expressions for the mobility and the diffu- 
sion constant. To obtain the mobility, we need to add to the system an 
external force F. But the formalism remains unchanged provided we add F 
to the ~(t) in Eq. (8a). In the Ohmic damping limit J(co)= r/co, the Green's 
function g(t) has the simple form [0(t) is the usual step function] 

g(t) = O(t) [ 1 -- exp( - r/t/m)]/r/ (13) 

while the zeroth-order solution is (for t > 0 +) 

Q o ( t ) = Q i + ( P i + q Q i ) g ( t ) / m +  d t ' [ F + ~ ( t ' ) ] g ( t - t ' )  (14) 

Using (7), it is then a straightforward matter to find the expressions for M 
and D. They are (5~ 

1 k~ 2~ dtl M = - + - -  ( - 1 )  n Vo dl2. 1"" 
r/ 2q 2 = 1 n - -oo 

2n 

x ~ E I~ktkF*F21,2.=r.~_,.,=o (15) 
{~j= +1} k=l 

and 

D =  + 2 k T  M -  ~ ( 1 )  ~V~ ~ dt2._~. . ,  dt~ 
4r/2 n= l - ~  ov 

• 2 2 cotan 2 #jg( t j - - tk)  FI•176 
{,,= ~1} k=l :=k+l  (16) 

The functions FI and Fz entering (15) and (16) have the form 

Fl({tj ,  ktj})= ~sln E ]~jg(tj--tk) (17) 
k = l  j = k + l  

F2({tj, &}) ;exp • &~C(tj-tk) (18) 
j , k = l  

where C(t) is the free particle's "mean-square displacement" after a "long 
time," 

C(t) = lim ( [Qo(t + t') - Q0(t')] 2)/2 
t ' ~ o O  

--;2 ,._cos,~ 
_ ~ t/o)h o.)~-(~2-~-7--~2) (19) 
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These are formally exact expressions for the mobility and the difussion 
constant (cf. also refs. 1-3). They serve as the starting point for the proof 
of the Kubo-Einstein relation. 

3. T H E  K U B O - E I N S T E I N  RELATION 

To proceed, let us rewrite the diffusion constant as 

D = k T M +  2t/ ( - ! ) ~  An 
n = l  

where 

(20a) 

2n-1 fo f,2o-i f'2 An-= E dt2n 1 dt2n_2..,  dtl 
s = l  - - o o  - - ~  

2 n  1 

x Im [ ( t . -  iflh/2) S~] 1~ ~k Im[Sk] [ ,~. = zX, ~v=o 
k ~ l , k # s  

& ( { t j , ~ j } ) = e x p  ~k ~ &R( t j - - tk )  
j > k  

(20b) 

(21) 

and R(t) is given by 

R(t)= ic(0 + ~ 1  k2 

f 
+~ d(o t/h cosh(/~coh/2) - cosh(flh/2 - it) o) 

= k2 - oo 2-7 co(m2co 2 + t/2) sinh(flo)h/2) (22) 

Note that R(t) can be analytically continuated into the striplike regime 
- flh <<. Im t ~< 0 in the lower half-plane. Moreover, it satisfies 

R ( t - i f l h ) = R * ( t * )  for flh>~Imt>~O (23a) 

R ( - i T ) = R * ( - i ~ )  for I m z = 0  (23b) 

For the lowest order term in (20a), 

0 

A 1 = 2  f dtl l m { ( t l - i ~ h / 2 )  e x p [ - R ( - t l ) ] }  
- -of?  

(24) 

is indeed zero. This is proved by deforming the integral contour over t 1 
into + i~h - oo -+ iflh --* O. We have 
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f 
0 

A1=2 dt, Im{(t , - i f lh/2)exp[-R(-t l )]}* 
- - c o  

P 0 

+ 2 Im ~ drl(-~l + flh/2) e x p [ - R ( - i % ) ]  
J~ h 

= - A ,  (25) 

where we have used (23) and the contribution at infinity vanishes (see the 
next section for further discussions). 

The above trick was first used in ref. 1. The question now is how to 
generalize it to arbitrary orders in Vo. Our strategy is essentially to cast the 
integral over the real axis into an integral over the imaginary axis (from 
ifih--* 0) one by one. In the first step, this can be achieved for tk < ts [-see 
the right-hand side of (20a) for t~]. Following the same approach used in 
Eq. (25), we obtain for the integral over tl, 

I i= f '2cod t i Im[ f l lS l ( { { , , l~ / } ) ]  

= ~ - # 1 e x p  #1 ~ #jR(t j- ta-ir l)  (26) 
h j = 2 

where in the last step the "Re" sign has been removed because the resulting 
integral is real. This can be checked by substituting v~ = f i h -  "~1 and using 
(23). The result of (26) is then incorporated into the integrand for the 
integral over t2, which now becomes 

t3co ~ [ exp(E2)] (27) I 2 = f  dt2fah2 Im ~ #1#2 
r #2 

In (27) we have introduced another expression Ee({r,, t~, #~}) for later 
convenience: 

2n 

E I ( { T i '  t i ' # i } )  = # 1  2 #jR(tj--tl) (28a)  
j > l  

and for k > 1 
2n 

Ek=Ek ll,k-l~,k+'~k 1 ~-]~k 2 #JR(O--tk) 
i> k 

= 2 #i#J R --i  r, 
j > i = l  s=i 

+ #j #,R t j - t k - i  ~ z s +pkR(tj--tk) 
j>k i 1 s=i 

(28b) 
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Moreover, if we define an operation P under which 

( / / 1 ,  / ' /2 , ' " ,  ~/k) "+ ( /~k - - ' ,  1~2, ~/1) 

(T1,  g2,. . . ,  gk_ l ) - - -+  ( g k _ l , . . .  , g2,  g l )  

then 

Chen 

P: E k l ' ~ ' k  +i~t,- 2i=1k-1 ~,) _-- Ek* (29) 

On the other hand, Ek is now an analytic function within 

f i b - z 1 - %  . . . . .  vk-1 > I m  tk~>0 

only. Going back to Eq. (27), we now use (29) and deform the contour into 
i ( f l h - Z l ) - o o - - +  i ( [ l h - z l ) +  t3--+ t3. It yields [for the same reason as in 
(26), the result does not contain either the "Ira" or "Re" sign] 

f ~ d% d% I2 = - - - -  O ( ~ h -  ~ 1 -  T2) 
2 2 

X 2 ]~1~2 exp(E2)],2~,3+,~2 (30) 
/* 1, #2 

For a general integral over tk, the relevant integrand is 

I m [  ~ /q#2-..#kexp(Ek) ] 
#1,..., #k 

The corresponding deformed contour is 

i f i b -  zj - o o - - + i  f i b -  zj +tk+l - -+tk+l  
j = l  j = l  

Therefore the property (29) can be applied. Substituting the results back 
into (20), we obtain 

1 2 ) ?+~ f ~  0~_~• ~ A . = s~  1 "_ dt 2. dt ~ ...  z i 
= oo --oo h i=1  

' ] x ~ #k Im(S~) 
{uj= +1} k>s 
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In the second step we deal with the difficulties arising from the factor 
(ts - i[Jli/2). Starting once more from the tl integral, we have [again for the 
same reasons leading to (26)] 

KI=I '~  d t ~ I m I ( ~ - ? ) e x p ( E 1 )  

- - ~ f ~ I i ( z ~ - ~ ) + t = l e x p ( E , ) [ ~ l ~ 2 + i ~  (32) 

To integrate over t2, we must include the s = 2  term in (31) so that the 
integrand has an imaginary part odd under 

t2 ~ t2 - i(flh - rl) and /~1 ~-~/~= 

In this way the result of 

K a = i m f ' 3  c~ {(#, It= i ( f ih2 z~)] dr2 5-  f.2 + 

+ ~  ( / ~ 2 - ~ )  r~ exp(E=) (33) 

is simply that: (a) changing y2~ dt~ -, ~ f~_~, a~2; (b) substituting for the 
integrand t2 ~ t3 + / / : 2 .  Carrying out this procedure, we observe that the 
integration has the general structure 

K, = Im dt, - -  . . . .  0 [lh - 5 ~ Y~ exp(E,) (34a) 

with the preexponential factor in the integrand 

Y,(r~, ti, I~i) = #i l~j t~-- i h - rk 
j 1 k = l  

j = l  k i k > j  

which also satisfies the relation 

�9 ,-~ = Y* (34c) P: Y s l t s  t~ + , (B t , -  Ej= t ~j) 

Therefore Ks can again be transformed into an integral over the imaginary 
axis. This yields 

K~=jp. 2 " -5  -o /~-  ~ uj 
j = l  

x ~ Y, exp(E~)l~,~,,+~+i~ (35) 
~1 ,.--, /~s 
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Adding the result to the next integrand for the integral over ts+~ leads to 

/~s+l gslts~ts+t+izs q- ],1 i (ts+ 1 - - i f l h / 2 ) =  Y ,+I  (36) 
i 

We can in this way continue the program. Eventually we arrive at 

f0 d 5 ..dr n '0 
An = I m  3~h 2 2 

•  ~ Y2., lexp(E2n-1)lt2, i=i~2. 1.~2.,=z2Oj=l~j=o (37) 
{~= +i} 

The right-hand side is obviously zero because the integrand is now 
nowhere imaginary! We therefore arrive at the conclusion that the 
Kubo-Einstein relation holds to all orders in V o. 

4. D I S C U S S I O N  

Until now we have assumed that the integrands are well behaved as 
t i - - , - o %  so that the integrals converge and the contributions from 
t i= - o o  vanish during the contour deformations. For finite-temperature 
Ohmic damping, this is indeed the case. Note that, going back to 
Eqs. (13) (19), for t--* 0% C ( t ) ~  kZkTt / t l  . For a given integral there let us 
divide the integral variables {t2n 1 ..... t~} into two subgroups and let the 
separations between them be large. One then finds that if the total "spins" 
in the subgroups are nonzero, the integrand is supressed by the C(t)'s; if 
the "spins" vanish, the suppression comes from the g(t)'s. Both of the 
suppressions have the exponential decay form. It is therefore not difficult to 
show that for sufficiently small V0 the series (15) and (16) are absolutely 
convergent (for this see Appendix C of ref. 5). Therefore the Einstein 
relation then holds exactly. 

The problem of localization arises at zero temperature. In this case 
C(t)  ,~, hk  2 In [tl/2~r/and the coefficient of V 2n for the velocity v(F)  has the 
structure (for large separations between the t's) 

{2n 
x I m e x p  i ~ #~Ptj 

j = l  

1 2n } t2n = Y'~ n-I #j = 0 +~-s ~ /zA~klnltj--tkl 
j , k = l  

...) 

(38) 
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where F=koF/q and ~=2rcq/hk~. The oscillating phase in (38) is now 
responsible for the convergence of the integral. Rescaling the time by ? = Ft, 
we have 

Bn(F ) ~ F(1 +2n(1 - ~)/~ x (---) (39) 

Thus it is singular in F. For  c~ > 1, the linear mobility cannot be defined via 
a series in terms of V0. In fact, it is believed that the system then suffers 
a localization transition./1 3/ 

In summary, we have proved that in the Ohmic damping limit the 
Kubo-Einstein relation is exact for the cosine potential; thus to a very 
general extent we have removed the boundary between the classical and the 
quantum Brownian motion for this problem. Moreover, the mathematical 
methods may be very useful for other studies on this system. It may be 
possible to generalize the result to more general cases, for example, to 
non-Ohmic dampings or non-cosine potentials. These are currently under 
investigation. 
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